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Abstract

An extension of the modeling proposed previously has been examined for the irreversible melting kinetics of polymer crystals on heating

with response to temperature modulation. The previous modeling has been successful in the explanation of the frequency dependence of the

apparent heat capacity obtained with temperature modulated DSC in the melting region of poly(ethylene terephthalate), polyethylene

and poly(caprolactam). In the present work this modeling was extended to explain an unusual behavior reported by Schawe et al. for

poly(e-caprolactone) and syndiotactic polypropylene, in which the latent heat gave a substractive effect to the real part of the apparent heat

capacity. A retardation of the melting rate coef®cient in response to temperature change has been considered. The retardation implies an

activation process in the melting kinetics of polymer crystals. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

We have proposed a phenomenological modeling of the

melting kinetics of polymer crystallites on linear heating

[1±3]. From the analysis of the kinetic response to a peri-

odic modulation in temperature, we obtained the frequency-

dependent apparent heat capacity roughly approximated

by Debye's type, as shown in Fig. 1a and the following

equation:

fDCe2ia � Cs 1 f �v� �1�

f �v� ; f 0�v�2 if 00�v� ù
2Fmeltb

21

1 1 ivtc�b� �2�

where Fmelt represents the endothermic heat ¯ow of melting,

v is the angular frequency of modulation and t c represents

the mean time of melting of each crystallite and depends on

the underlying linear heating rate, b . We have shown that

the expression well explains the frequency and heating rate

dependences of the apparent heat capacity obtained by

temperature-modulated DSC (TMDSC) in the melting

region of polymer crystals, such as poly(ethylene tereph-

thalate) [1], polyethylene [2] and poly(caprolactam) [4];

typical experimental results are shown in Fig. 1b by open

symbols.

On the other hand, Schawe et al. reported unusual

frequency dependence in the melting region of poly(e-capro-

lactone) [5] and syndiotactic polypropylene [6,7], as shown

in Fig. 1a; we have recently recon®rmed similar frequency

dependence in isotactic polypropylene as shown in Fig. 1b

by ®lled symbols [8]. In these results, the melting response

appears as a subtractive effect in the real part of the apparent

heat capacity.

The conventional DSC exhibits an endothermic peak of

melting on heating. This means that the latent heat gives an

additive effect to the apparent heat capacity determined by

TMDSC because of the following reason. When the melting

occurs instantaneously compared to the time period of

modulation, the endothermic heat ¯ow appears only on

the occasion of temperature change, and hence the response

of melting is indistinguishable from the response due to true

heat capacity which is also in proportion to the temperature

change. In such limiting case [9], the response must have an

additive contribution to the real part of heat capacity, as

shown in Fig. 1a for vtc ! 0: Therefore, the subtractive

effect in the real part observed by Schawe et al. and us
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must turn over to the additive contribution for lower

frequency. We expect a reasonable continuation to the

expression of Eq. (2) with an additional effect in the melting

kinetics discussed below.

In our previous modeling, we have assumed that the melt-

ing of a crystallite needs a ®nite time but the rate of melting

responds to temperature change without delay. If the melt-

ing rate follows temperature change with delay, the retarda-

tion time, t r, must be in the contribution of kinetic response,

which will be approximated as

ftr
�v� ù

1

1 1 ivtr

f �v� �3�

With the additional frequency dispersion, we expect the

subtractive nature in the real part for higher frequency as

shown in Fig. 1c.

In the present paper, we extend the previous modeling to

incorporate the retardation of melting rate coef®cient in

response to temperature change. The modeling provides a

comprehensive explanation for the melting response, which

can be roughly approximated by Eq. (3).

2. Brief review of the modeling of melting kinetics with
response to temperature modulation [1±3]

In order to model the response in heat ¯ow of the melting

process of polymer crystals, we suppose that the aggregate

of crystallites have a broad distribution of melting tempera-

tures. The decrease in the crystallinity of each fraction,

f�t;Tm�; is assumed to be described by a melting rate coef-

®cient, R, as

df�t;Tm�
dt

� 2Rf�t; Tm� �4�

Here, the melting rate coef®cient is assumed to be a function

of superheating, DT ; Ts 2 Tm: The change in the crystal-

linity of the fraction for superheating only �dTs=dt . 0� is

then given as

f�Dt . 0� � f0�Tm� exp 2
ZDt

0
R�DT�Dt 0�� dt 0

" #
�5�

where Dt ; t 2 t0 with Ts � Tm at t � t0 and f0�Tm� repre-

sents the distribution function of melting points. The

endothermic heat ¯ow of melting, Fmelt�t�; is then expressed

as

Fmelt�t� � DH
d

dt

Z1

0
f�t;Tm� dTm �6�

with the enthalpy change, DH, of the system.

In our previous treatment, we assumed that R follows the

change in sample temperature without delay. Then, for a

small sinusoidal modulation in temperature with underlying

linear heating, Ts � bt 1 ~Ts eivt
; the melting rate coef®cient

and the crystallinity of the fraction in Eqs. (5) and (6) can be

expanded in terms of the modulation. Therefore, we can in

principle calculate the response to temperature modulation.

In order to obtain the analytical expression for the steady

response of melting kinetics, we suppose a uniform distri-

bution of the initial fractions, f0�Tm� � f0: The steady

response of heat ¯ow to the sinusoidal modulation in

temperature is then represented by Fourier series expressed

as

Fmelt�t� � �Fmelt 1 F 0T �v� ~T s eivt 1 ¼ �7�

�Fmelt � 2bDHf0 �8�

F 0T �v� ~T s � bf0

Z1

2 1
e2ivtFmelt�t� dt �9�

The modulation component of total heat ¯ow is the sum of

contribution of heat capacity and of heat ¯ow of melting

represented as

2Cs

d

dt
~T s eivt 1 F 0T ~T s eivt � 2 Cs 1

i

v
F 0T

� �
d

dt
~T s eivt

and hence, when arranged as a heat capacity, the kinetic

contribution to the apparent heat capacity in Eq. (1), is

expressed as

f �v� � i

v
F 0T �v�

� 2 �Fmelt

Z1

0
e2ivx e

2

Zx

0
R�by� dy

dx
Zx

0
eivyR 0�by� dy

�10�
where R 0 ; dR=d�DT�:

As a typical example, when the melting rate coef®cient is

linearly dependent on superheating, i.e. R � aDT ; the calcu-

lated result becomes as follows:

f �v� � 2 �Fmelt=b

vtc

e2�vtc�2
Zvtc

0
ex2

dx 2 i

��
p
p
2
�1 2 e2�vtc�2�

� �
�11�

tc � 1

2ab

� �1=2

�12�

The frequency dependence is roughly approximated by

Debye's type, as shown in Fig. 3.

3. Modeling with retardation in the melting rate
coef®cient

In the present treatment, we assume that R follows the

change in sample temperature with a delay characterized by

a retardation time, t r, as shown in Fig. 2. The behavior can

be expressed as

DR � 1 2 exp 2
t

tr

� �� �
DR0 �13�
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with the melting rate coef®cient for t � 1 being R0�DT�:
The consequent melting rate coef®cient is then expressed as

R�t� �
Zt

t0

1 2 exp 2
t 2 s

tr

� �� �
dR0

d�DT�
d�DT�

ds
ds �14�

The coef®cient is rearranged in terms of Dt as

R�Dt� � R0�DT�Dt��2
ZDt

0
e�s2Dt�=tr R 00

d�DT�
ds

ds �15�

The corresponding contribution in heat capacity, ftr
�v�; is

calculated as

ftr
�v� � 2 �Fmelt

Z1

0
e2ivx e

2

Zx

0
R3�by� dy

dx
Zx

0
R4�by� dy

�16�
R3�by� � 1

tr

Zy

0
es2y=tr R0�bs� ds �17�

R4�by� � 1

tr

Zy

0
e�s2y=tr�1ivsR 00�bs� ds �18�

Fig. 3 shows the results of numerical calculation for the

linear dependence on superheating of the melting rate coef-

®cient. The mean time, t c, has been ®xed at 100 s and the

retardation times, t r, of 0.1, 10 and 100 s were examined. It

is seen that the deviation of ftr
from f becomes larger with

longer t r, and the expected change in the real part can be

con®rmed. Fig. 3 also shows that the formula of Eq. (3) is a

good approximation for shorter t r.

For different dependences on superheating of the melting

rate of coef®cient, such as constant melting rate coef®cient,

R � a; and exponential dependence, R � a�ecDT 2 1�; the

in¯uence of the retardation was similar to the case of R �
aDT :

4. Discussion

We have modeled the melting kinetics of polymer crys-

tals on linear heating with additional periodic modulation in

temperature. With the incorporation of the retardation of

melting rate coef®cient, we have obtained the kinetic contri-

bution having a subtractive effect to the true heat capacity

determined by TMDSC. The behavior will correspond to the

experimental results reported by Schawe et al. [5±7] and

recon®rmed by us [8]. The kinetic contribution for lower

frequency turns over to the additive effect, which in turn

corresponds to our experimental results explained by our

previous modeling without retardation [1,2,4]. Therefore,

the present modeling explains the whole spectrum of the

dispersion of the apparent heat capacity in the melting

region of polymer crystals.
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Fig. 2. Schematic representation of the retardation behavior of melting rate

coef®cient responding to temperature change.

Fig. 1. Cole±Cole plot of the apparent heat capacity obtained in the melting

region of polymer crystals with different modulation frequency; schematic

plot in (a) and (c) and experimental results of polyethylene [2] (open

symbols obtained with different heating rates) and isotactic polypropyrene

[8] (®lled symbols) in (b). Curve A represents the frequency response

function of Debye type, which roughly approximates the experimental

results of poly(ethylene terephthalate) [1], polyethylene [2] and poly(ca-

prolactam) [4]. Curve B represents the results of poly(e-caprolactone) [5],

syndiotactic polypropylene [6,7] reported by Schawe et al. The symbols, W

and K in (a), represent the asymptotic values for vtc ! 1 and vtc ! 0;

respectively. The dotted and solid lines in (b) represent the analytic solu-

tions for the melting rate linearly and exponentially depending on super-

heating, respectively. The broken line in (b) and curve C in (c) represent ftr

of Eq. (3) with f of Eq. (2).



The retardation of melting rate coef®cient indicates that

the temperature dependent melting kinetics needs a recon-

struction of crystal±melt interface. Experimentally [1,2,4],

it has been con®rmed that the power, x, of heating rate

dependence of the mean time of melting in tc / b2x is

larger than 0.5. The power is related to the superheating

dependence of the melting rate coef®cient [3] by the formula

of R / DTx=�12x�
; and hence the power x larger than 0.5

indicates the superheating dependence stronger than linear

dependence. Those results strongly indicate an activation

process required for the melting of polymer crystals. The

process may be controlled by a nucleation, the possibility of

which has not been considered seriously in the melting

process; a nonlinear melting rate has been reported only

for a few polymers under restricted conditions [10,11].

The present explanation therefore has a great importance

in the understanding of the melting kinetics of polymer

crystals.
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Fig. 3. Numerical calculation of the kinetic contribution in the apparent heat

capacity for the linear dependence on superheating of melting rate coef®-

cient. The symbols, W, K and L, represent the results of tr � 0:1; 10 and

100 s, respectively. The thick line represents Eq. (11) and the thin lines are

of Eq. (3) with respective t r. The mean time t c is ®xed at 100 s.


